Efficient Simulation Method for Polarizable Protein Force Fields:  Application to the Simulation of BPTI in Liquid Water.

نویسندگان

  • Edward Harder
  • Byungchan Kim
  • Richard A Friesner
  • B J Berne
چکیده

A methodology for large scale molecular dynamics simulation of a solvated polarizable protein, using a combination of permanent and inducible point dipoles with fluctuating and fixed charges, is discussed and applied to the simulation of water solvated bovine pancreatic trypsin inhibitor (BPTI). The electrostatic forces are evaluated using a generalized form of the P3M Ewald method which includes point dipoles in addition to point charge sites. The electrostatic configuration is propagated along with the nuclei during the course of the simulation using an extended Lagrangian formalism. For the system size studied, 20000 atoms, this method gives only a marginal computational overhead relative to nonpolarizable potential models (1.23-1.45) per time step of simulation. The models employ a newly developed polarizable dipole force field for the protein(1) with two commonly used water models TIP4P-FQ and RPOL. Performed at constant energy and constant volume (NVE) using the velocity Verlet algorithm, the simulations show excellent energy conservation and run stably for their 2 ns duration. To characterize the accuracy of the solvation models the protein structure is analyzed. The simulated structures remain within 1 Å of the experimental crystal structure for the duration of the simulation in line with the nonpolarizable OPLS-AA model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units

The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination ...

متن کامل

Application of A Simulation Algorithm for Dynamic and Nonlinear Analysis of A Liquid Propellant Engine

In this paper application of a simulation algorithm for dynamic and nonlinear analysis of a specific liquid propellant engine is presented. The mathematical model of the engine includes a set of nonlinear algebraic equations which is coupled with a set of time varying differential equations. In contrast to the existing liquid propellant simulation algorithms, the presented work does not depend ...

متن کامل

Structure and dynamics of the solvation of bovine pancreatic trypsin inhibitor in explicit water: a comparative study of the effects of solvent and protein polarizability.

To isolate the effects of the inclusion of polarizability in the force field model on the structure and dynamics of the solvating water in differing electrostatic environments of proteins, we present the results of molecular dynamics simulations of the bovine pancreatic trypsin inhibitor (BPTI) in water with force fields that explicitly include polarization for both the protein and the water. W...

متن کامل

Specific ion adsorption at the air/water interface: The role of hydrophobic solvation

Classical force fields for molecular simulations of aqueous electrolytes are still controversial. We study alkali and halide ions at the air/water interface using novel non-polarizable force fields that were optimized based on bulk thermodynamics. In qualitative agreement with polarizable force-field simulations, ion repulsion from the interface decreases with increasing ion size. Iodide is eve...

متن کامل

Ion solvation thermodynamics from simulation with a polarizable force field.

Thermodynamic measurements of the solvation of salts and electrolytes are relatively straightforward, but it is not possible to separate total solvation free energies into distinct cation and anion contributions without reference to an additional extrathermodynamic assumption. The present work attempts to resolve this difficulty using molecular dynamics simulations with the AMOEBA polarizable f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2005